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in Volume 22, Number 101, January 1968, p. 212. 

13 [2.05, 2.30, 2.55, 7].-YUDELL L. LUKE, On generating Bessel Functions by Use 
of the Backward Recurrence Formula, Report ARL 72-0030, Aerospace Research 
Laboratories, Air Force Systems Command, United Air Force, Wright-Patterson 
Air Force Base, Ohio, February 1972, iv + 40 pp., 27 cm. 

Approximations to the Bessel functions I>(z) and J,(z), which result from J. C. P. 
Miller's well-known backward recurrence algorithm, are here expressed in terms of 
hypergeometric functions. It transpires that some of these approximations are identical 
with certain rational approximations developed elsewhere by the author [1]. The 
truncation error and the effect of rounding errors are similarly analyzed. Realistic 
a priori error bounds emerge along with a demonstration that rounding errors in 
Miller's algorithm are insignificant. 

W. G. 

1. Y. L. LUKE, The Special Functions and Their Approximations, Vols. 1 and 2, Academic 
Press, New York, 1969. 

14 [2.10J.-A. H. STROUD, Approximate Calculation of Multiple Integrals, Prentice- 
Hall, Inc., Englewood Cliffs, N. J., 1971, xiii + 431 pp., 23 cm. Price $16.50. 

The approximate integration of functions of one variable is a subject which today 
is reasonably well understood, both in its theoretical and practical ramifications, 
and which is extensively documented in a number of books. The same, unfortunately, 
cannot be said for integration in higher dimensions. There are several reasons for 
this. On the theoretical side, one faces the problem of having to cope with an infinite 
variety of possible regions over which to integrate, in contrast to one dimension, 
where every connected region is an interval. In addition, there is no theory of ortho- 
gonal polynomials in several variables coming to our aid, which would be comparable 
in simplicity to the well-known one-dimensional theory. On the practical side, one 
runs up against what R. Bellman refers to as "the curse of dimensionality". The 
tensor product of a two-point quadrature rule in 100 dimensions calls for 21?001030 

function evaluations, a task well beyond the capabilities of even the fastest computers 
of today. In spite of these formidable difficulties, a good deal of progress has been 
made, particularly in the last couple of decades. The book under review is the first 
major attempt of summarizing and codifying current knowledge in the field. The 
only major omission is S. L. Sobolev's theory of formulas "with a regular boundary 
layer", which, however, is discussed in a recent survey article by S. Haber [1], and 
is also expected to be the subject of a forthcoming book by Sobolev. 
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The book is divided into two parts, entitled "Theory" and "Tables". Part I is 
concerned with the existence and construction of integration formulas of the form 

N 

f w(x)f(x) dx = E BJf(vi) + E[f] 

and with the estimation of the remainder term E[f]. Here, D is a domain in n-dimen- 
sional Euclidean space and w a given weight function (often identically equal to 1). 
Part II contains tables of virtually all known formulas of this type and related com- 
puter programs. 

After an introductory chapter, the discussion begins in Chapter 2 with the con- 
struction of product formulas for special n-dimensional regions. The object, thus, 
is to approximate the desired integral in the form of a Cartesian product of lower- 
dimensional integration rules, the component rules often being one-dimensional 
Gaussian rules with suitable weight functions. Among the regions treated are the 
n-dimensional cube, the n-simplex, n-dimensional cones, the n-sphere and its surface, 
and the n-dimensional torus. A more general (original) result shows how a formula 
for a solid star-like n-dimensional region can be obtained from a formula known for 
its surface. While the use of product formulas is restricted to rather special (though 
common) regions, nonproduct formulas must be envisaged if one wants to deal 
with more general, or even arbitrary, regions in n-space. An account of such formulas 
is given in Chapter 3, one of the longest in the book, and also the most heterogeneous 
one, methodologically. There are a number of objectives one can pursue and, corre- 
spondingly, a number of more or less ad hoc approaches to achieve them. The first 
(and perhaps easiest) objective is to construct integration formulas, for arbitrary 
regions and weight functions, having algebraic degree d and requiring not more than 
N = (n + d) !/(n !d!) function evaluations. It is shown that this can be done, essentially 
by solving a system of linear algebraic equations. The results are analogues of Newton- 
Cotes formulas in one dimension. The author then goes on to describe P. J. Davis' 
procedure for constructing a special class of such formulas, distinguished by having 
all coefficients Bi positive and all points v, contained in the region of interest. The 
existence of such formulas was proved earlier by Tchakaloff using nonconstructive 
arguments. The emphasis then shifts to formulas having relatively low degrees and 
requiring as few points as possible. A great number of these are presented, both for 
arbitrary and special regions. Their construction involves the solution of certain 
systems of nonlinear equations by matrix methods, or else is based on the relationship 
which exists between multivariate orthogonal polynomials and integration formulas. 
A rudimentary theory (largely due to the author) which explores this relationship 
is developed in detail. Formulas which have been constructed specifically for two- 
dimensional regions are also included, notably Radon's fifth-degree seven-point 
formula. It is proved, quite generally, that a formula of degree d = 2k in n dimensions 
can have no fewer than N = (n + k) !/(n !k!) points. Similar, but more complicated, 
results hold for odd degrees. The chapter concludes with a brief discussion of 
Romberg-type methods for integration over the n-cube. Chapter 4 deals with the 
extension of formulas to higher dimensions, in particular, with devices, other than 
product methods, for extending a formula of degree d for the m-cube to a formula 
of the same degree for the n-cube, where n > m. Chapter 5 presents an extensive 
survey of error estimates. Two kinds of estimates are considered in detail. Both are 
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based on viewing the error E[f] as a linear functional in one function space or another. 
In the first type of estimate, the functions f are assumed to possess partial derivatives 
up to a finite order and the spaces considered are typified by the validity of an appro- 
priate Taylor's formula. For such spaces Sard's theory of representing linear func- 
tionals can be applied, leading immediately to the desired estimates. The novelty 
here is that many of the error constants required in these estimates are carefully 
tabulated and that a number of three-dimensional plots are reproduced which vividly 
illustrate the behavior of the kernel functions involved. The second type of estimates 
applies to analytic functions and uses Hilbert space techniques to bound the norm 
of the error functional. Chapter 6, finally, reviews Monte Carlo and "number- 
theoretic" methods for integration over the n-cube. These are basically integration 
rules with all coefficients equal, and points chosen either at random (with uniform 
distribution over the cube), or in some other fashion designed to reduce the error. 
This usually involves equidistribution considerations, and it is here where number 
theory comes in. 

Part II begins with a short chapter defining the eighteen regions in n-space for 
which integration formulas are to be catalogued. The formulas are subsequently 
listed in Chapter 8, which clearly is the core of the whole work. For each of the eighteen 
regions there are tabulated formulas of increasing degrees, beginning with degree 
d = 1 and going as high as degree d = 11 (and sometimes higher for special two- 
and three-dimensional regions). Often several formulas are given for the same degree 
and those, particularly useful in the author's judgment, are identified. With many of 
the formulas, error constants are tabulated which are useful not only for error esti- 
mation, but also for comparison of formulas. References to the original sources are 
provided with most formulas. Since the points in many of the integration formulas 
listed are the vertices of certain convex regular n-dimensional polytopes, Chapter 9 
provides the coordinates for the respective vertices. Chapter 10, finally, presents a 
number of FORTRAN programs for selected integration formulas and programs 
for the evaluation of error constants and Sard's kernel functions. The book concludes 
with an extensive bibliography containing well over 300 items, two-thirds of them 
dated 1960 or later. A notable omission is the book by Sobol' [2], which may have 
appeared too late for inclusion. 

It is an indication of the rapid development of the field that an open question 
mentioned on p. 100 has since been settled. I. P. Mysovskikh and V. la. Chernit'sina [3] 
showed that regions exist for which the three integrals in (3.12-2) vanish simul- 
taneously. The author's remark (p. 100) "By Theorem 3.15-3 it follows that a fifth- 
degree formula for R2 cannot be found with six points" is thereby proved invalid. 

The book is written clearly, concisely, and to the point. Typographical errors 
appear to be very few, and only minor inaccuracies have been noted by the reviewer. 
On p. 58, e.g., it is misleading to define a hyperplane ,CN-1 of EN as "an (N - 1)- 
dimensional subspace of EN". On page 185 the assumption in the hypercircle inequality 
(Theorem 5.13-1) is misquoted inasmuch as w should be assumed an element of the 
hyperplane (5.13-1), not of the hypercircle 9r N. To state a conjecture in the form 
of a theorem (Theorem 4.3-1) is a questionable practice, in the reviewer's opinion. 
Minor blemishes, such as these, however, do not detract from the enormous value 
of this monograph as a reference work and systematic exposition of present knowledge 
on the subject. It will prove an invaluable source of information and a dependable 
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guide to all those who are faced with having to come up with numerical answers 
to multiple-integration problems. 

W. G. 

1. S. HABER, "Numerical evaluation of multiple integrals," SIAM Rev., v. 12, 1970, pp. 
481-526. 

2. I. M. SOBOL', Multidimensional Quadrature Formulas and Haar Functions, Izdat. 
"Nauka", Moscow, 1969. (Russign) . 

3. I. P. MYSOVSKIKH & V. IA. CHERNITSINA, "Answer to a question of Radon," Dokl. Akad. 
Nauk SSSR, v. 198, 1971, pp. 537-539. (Russian) 

15 [5, 13.05, 13.15].-G. DUVAUT & J. L. LIONS, Les Inequations en Micanique et en 
Physique, Dunod, Paris, 1972, xx + 387 pp., 25 cm. Price 118 Fr. 

Important advances in "classical" mathematical physics have been made in the 
last two decades, due to the consistent application of new techniques in studying 
partial differential equations. The book under review is a contribution in this direction. 
For the most part, the text is concerned with providing rigorous proofs of existence 
and uniqueness theorems for certain classes of partial differential equations of con- 
tinuum mechanics that have inequalities as boundary conditions. The authors have 
made some effort to explain the physical meaning of these problems as well as to 
provide some context for the methods of functional analysis and Sobolev spaces 
used to solve them. The diverse areas discussed include the equations of plasticity 
and (linear) elasticity, non-Newtonian (Bingham) fluids, and boundary value problems 
for Maxwell's equations, among others. 

The book consists of seven chapters that can be read independently. In each 
chapter, various physical problems are formulated in terms of partial differential 
equations and boundary conditions and then shown to possess "generalized solutions." 
A reader cannot help but admire the virtuosity of the authors, yet he is left in doubt 
concerning the deeper aspects and implications of the subject. 

A sequel on numerical methods for the problems considered is promised in the 
near future. 

MELVYN S. BERGER 

School of Mathematics 
The Institute for Advanced Study 
Princeton, New Jersey 08540 

16 [71.-LUDo K. FREVEL, Evaluation of the Generalized Error Function, Department 
of Chemistry, The Johns Hopkins University, Baltimore, Maryland. Ms. of 
8 typewritten pp. deposited in the UMT file. 

The author tabulates to 5S (unrounded) the "natural" error function 

{E ~ ~~ 1 r- t P 


